Sorry, your browser cannot access this site
This page requires browser support (enable) JavaScript
Learn more >

这一节Ext函子和Tor函子, 大部分内容是上一章的直接推论, 唯一一个不平凡的定理择时对双函子Hom导出会得到相同的结果. 本节后半部分是关于这俩导出函子的计算的, 这俩函子的计算十分富有技巧性, 全写上来会很长. 最后部分的表格参考了Xiong Rui的小册子.

We consider category with enough projectives, e.g. Mod\mathrm{Mod}.

Functor Ext\mathrm{Ext}

Definition 1. The extension functor ExtAn(,B)\mathrm{Ext}_{\mathcal{A}}^{n}(-,B) is given by right derived functor of HomA(,B)\mathrm{Hom}_{\mathcal{A}}(-,B), the controvariant functor. I.e. ExtAn(,B)=RnHomA(,B)\mathrm{Ext}_{\mathcal{A}}^{n}(-,B)=R^{n}\mathrm{Hom}_{\mathcal{A}}(-,B).

Since Hom(,B)\mathrm{Hom}(-,B) is a left exact functor, ExtA0(A,B)Hom(A,B)\mathrm{Ext}_{\mathcal{A}}^{0}(A,B)\cong \mathrm{Hom}(A,B), by theorem in Derived Functors.

Proposition 1. If PP is projective, II is injective, then ExtAn(P,B)=ExtAn(A,I)=0\mathrm{Ext}_{\mathcal{A}}^{n}(P,B)=\mathrm{Ext}_{\mathcal{A}}^{n}(A,I)=0.

Proof

Proof. For projective resolution OPO\to P, we have

ExtAn(P,B)=Hn(Hom(O,B))=0\mathrm{Ext}_{\mathcal{A}}^{n}(P,B)=H^{n}(\mathrm{Hom}(O,B))=0

For ExtAn(A,I)\mathrm{Ext}_{\mathcal{A}}^{n}(A,I), we check that Hom(,I)\mathrm{Hom}(-,I) is an exact functor. Only need to show for exact sequence 0ABC00\to A\to B\to C\to 0, Hom(B,I)Hom(A,I)0\mathrm{Hom}(B,I)\to \mathrm{Hom}(A,I)\to 0 exact. This is directly from the injectivity. So Hom(,A)\mathrm{Hom}(-,A) is exact, and RnHom(,I)=0R^{n}\mathrm{Hom}(-,I)=0 for all n1n\geq 1. ◻

Proposition 2. For any exact sequence 0BBB00\to B'\to B\to B''\to 0 and object AA, we have the long exact sequence

ExtAn(A,B)ExtAn(A,B)ExtAn(A,B)ExtAn+1(A,B)\cdots\to\mathrm{Ext}_{\mathcal{A}}^{n}(A,B')\to \mathrm{Ext}_{\mathcal{A}}^{n}(A,B)\to \mathrm{Ext}_{\mathcal{A}}^{n}(A,B'')\to \mathrm{Ext}_{\mathcal{A}}^{n+1}(A,B')\to \cdots

Proof

Proof. Immediate corollary from Derived Functors ◻

Functor Extˉ\bar{\mathrm{Ext}}

Definition 2. The extension functor ExtˉAn(A,)\bar{\mathrm{Ext}}_{\mathcal{A}}^{n}(A,-) is given by the right derived functor of HomA(A,)\mathrm{Hom}_{\mathcal{A}}(A,-), the covariant functor, i.e. ExtˉAn(A,)=RnHomA(A,)\bar{\mathrm{Ext}}_{\mathcal{A}}^{n}(A,-)=R^{n}\mathrm{Hom}_{\mathcal{A}}(A,-).

Hom(A,)\mathrm{Hom}(A,-) is a left exact functor so ExtˉA0(A,B)=Hom(A,B)\bar{\mathrm{Ext}}_{\mathcal{A}}^{0}(A,B)=\mathrm{Hom}(A,B).

Theorem 1. The bifunctor ExtAn(,)\mathrm{Ext}_{\mathcal{A}}^{n}(-,-) and ExtˉAn(,)\bar{\mathrm{Ext}}_{\mathcal{A}}^{n}(-,-) are naturally equivalent.

Proof

Proof. We use induction to show ExtAn(,)ExtˉAn(,)\mathrm{Ext}_{\mathcal{A}}^{n}(-,-)\cong \bar{\mathrm{Ext}}_{\mathcal{A}}^{n}(-,-).

For n=1n=1, take an injective presentation 0BIS00\to B\to I\to S\to 0 of BB and a projective resolution PP of AA. Since PnP_{n} are all projective, we have

0Hom(P,B)Hom(P,I)Hom(P,S)00\to \mathrm{Hom}(P,B)\to \mathrm{Hom}(P,I)\to\mathrm{Hom}(P,S)\to 0

exact. Applying the right derived functor, we get

Hom(A,I)Hom(A,S)ExtA1(A,B)0=ExtA1(A,I)\mathrm{Hom}(A,I)\to \mathrm{Hom}(A,S)\to\mathrm{Ext}_{\mathcal{A}}^{1}(A,B)\to 0=\mathrm{Ext}_{\mathcal{A}}^{1}(A,I)

exact. Derive the exact sequence 0BIS00\to B\to I\to S\to 0, we also have the exact sequence

Hom(A,I)Hom(A,S)ExtA1(A,B)0=ExtˉA1(A,I)\mathrm{Hom}(A,I)\to \mathrm{Hom}(A,S)\to\mathrm{Ext}_{\mathcal{A}}^{1}(A,B)\to 0=\bar{\mathrm{Ext}}_{\mathcal{A}}^{1}(A,I)

From the above two exact sequence, ExtA1(A,B)ExtˉA1(A,B)\mathrm{Ext}_{\mathcal{A}}^{1}(A,B)\cong \bar{\mathrm{Ext}}_{\mathcal{A}}^{1}(A,B).

For n2n\geq 2, just replace these two exact sequence by

ExtˉAn1(A,I)ExtˉAn1(A,S)ExtˉAn(A,B)ExtˉAn(A,I)\bar{\mathrm{Ext}}_{\mathcal{A}}^{n-1}(A,I)\to \bar{\mathrm{Ext}}_{\mathcal{A}}^{n-1}(A,S)\to \bar{\mathrm{Ext}}_{\mathcal{A}^{n}}(A,B)\to \bar{\mathrm{Ext}}_{\mathcal{A}}^{n}(A,I)

and

ExtAn1(A,I)ExtAn1(A,S)ExtAn(A,B)ExtAn(A,I)\mathrm{Ext}_{\mathcal{A}}^{n-1}(A,I)\to \mathrm{Ext}_{\mathcal{A}}^{n-1}(A,S)\to \mathrm{Ext}_{\mathcal{A}}^{n}(A,B)\to \mathrm{Ext}_{\mathcal{A}}^{n}(A,I)

For exact sequence 0Rn1Pn1P0A00\to R_{n-1}\to P_{n-1}\to \cdots\to P_{0}\to A\to 0, where Pn1,,P0P_{n-1},\dots, P_{0} are all projective, then

ExtAn(A,B)=Coker(Hom(Pn1,B)Hom(Rn1,B))\mathrm{Ext}_{\mathcal{A}}^{n}(A,B)=\mathrm{Coker}(\mathrm{Hom}(P_{n-1},B)\to \mathrm{Hom}(R_{n-1},B))

For exact sequence 0BI0In1Sn100\to B\to I_{0}\to \cdots\to I_{n-1}\to S_{n-1}\to 0, where I0,,In1I_{0},\dots, I_{n-1} are all injective, then

ExtAn(A,B)=Coker(Hom(A,In1)Hom(A,Sn1))\mathrm{Ext}_{\mathcal{A}}^{n}(A,B)=\mathrm{Coker}(\mathrm{Hom}(A,I_{n-1})\to \mathrm{Hom}(A,S_{n-1}))

These are the corollary of theorem in Derived Functors

Functor Tor\mathrm{Tor}

Definition 3. The torsion functor TornA(A,)\mathrm{Tor}_{n}^{\mathcal{A}}(A,-) is given by the left derived functor of the covariant functor AAA\otimes_{\mathcal{A}}-, i.e. TornA(A,)=Ln(AA)\mathrm{Tor}_{n}^{\mathcal{A}}(A,-)=L_{n}(A\otimes_{\mathcal{A}}-).

Since AA\otimes - is a right exact functor, we have Tor0A(A,B)=AB\mathrm{Tor}^{\mathcal{A}}_{0}(A,B)=A\otimes B.

Similarly, we can define TorˉnA(,B)=Ln(B)\bar{\mathrm{Tor}}^{\mathcal{A}}_{n}(-,B)=L_{n}(-\otimes B), here B-\otimes B is a covariant functor.

Theorem 2. The bifunctor TornA(,)\mathrm{Tor}^{\mathcal{A}}_{n}(-,-) and TorˉnA(,)\bar{\mathrm{Tor}}^{\mathcal{A}}_{n}(-,-) are naturally equivalent.

Proof

Proof. Similar to the proof of Ext\mathrm{Ext} and Extˉ\bar{\mathrm{Ext}} above. Note that every projective module is flat. ◻

Similary to functor Ext\mathrm{Ext}, we have following conclusions. For the exact sequence 0Rn1Pn1P0A00\to R_{n-1}\to P_{n-1}\to \cdots\to P_{0}\to A\to 0, where Pn1,,P0P_{n-1},\dots, P_{0} are all projective, then

TornA(A,B)=Ker(Rn1BPn1B)\mathrm{Tor}^{\mathcal{A}}_{n}(A,B)=\mathrm{Ker}(R_{n-1}\otimes B\to P_{n-1}\otimes B)

For the exact sequence 0Rn1Pn1P0B00\to R_{n-1}\to P_{n-1}\to \cdots\to P_{0}\to B\to 0, where Pn1,,P0P_{n-1},\dots, P_{0} are all projective, then

TornA(A,B)=Ker(ARn1APn1)\mathrm{Tor}^{\mathcal{A}}_{n}(A,B)=\mathrm{Ker}(A\otimes R_{n-1}\to A\otimes P_{n-1})

Proposition 3. If AA is flat, then for any object PP, TornA(A,B)=0\mathrm{Tor}^{\mathcal{A}}_{n}(A,B)=0. Similar for flat BB.

Proof

Proof. For projective resolution PB0P\to B\to 0, APAB0A\otimes P\to A\otimes B\to 0 is also exact. Thus TornA(A,B)=0\mathrm{Tor}^{\mathcal{A}}_{n}(A,B)=0. ◻

Theorem 3. If object AA has flat resolution FA0F\to A\to 0,

$$F\quad \cdots\to F_{2}\to F_{1}\to F_{0}$$

then TornA(A,B)=Hn(FB)\mathrm{Tor}^{\mathcal{A}}_{n}(A,B)=H_{n}(F\otimes B)

Proof

Proof. We omit this proof and just use it. ◻

Computation fo Ext\mathrm{Ext} and Tor\mathrm{Tor}

Theorem 4.

  1. Hom(iAi,jBj)=i,jHom(Ai,Bj)\mathrm{Hom}(\oplus_{i} A_{i},\prod_{j}B_{j})=\prod_{i,j}\mathrm{Hom}(A_{i},B_{j}).

  2. ExtAn(iAi,jBj)=i,jExtAn(Ai,Bj)\mathrm{Ext}_{\mathcal{A}}^{n}(\oplus_{i}A_{i},\prod_{j}B_{j})=\prod_{i,j}\mathrm{Ext}_{\mathcal{A}}^{n}(A_{i},B_{j}).

  3. (iAi)(jBj)=i,j(AiBj)(\oplus_{i}A_{i})\otimes (\oplus_{j}B_{j})=\oplus_{i,j}(A_{i}\otimes B_{j}).

  4. TornA(iAi,jBj)=i,jTornA(Ai,Bj)\mathrm{Tor}^{\mathcal{A}}_{n}(\oplus_{i}A_{i},\oplus_{j}B_{j})=\oplus_{i,j}\mathrm{Tor}^{\mathcal{A}}_{n}(A_{i},B_{j}).

Proof

Proof. Omitted. ◻

Now we focus on Z\mathbb{Z}-Mod\mathrm{Mod}, ZnZ_{n}-Mod\mathrm{Mod}, Q\mathbb{Q}-Mod\mathrm{Mod} and Q/Z\mathbb{Q /Z}-Mod\mathrm{Mod}.

For Hom\mathrm{Hom}, we have

Hom(,)\mathrm{Hom}(\downarrow,\rightarrow) ZmZ_{m} Z\mathbb{Z} Q\mathbb{Q} Q/Z\mathbb{Q/Z}
ZnZ_n Z(m,n)Z_{(m,n)} 00 00 ZnZ_n
Z\mathbb{Z} ZmZ_m Z\mathbb{Z} Q\mathbb{Q} Q/Z\mathbb{Q/Z}
Q\mathbb{Q} 00 00 Q\mathbb{Q} ?
Q/Z\mathbb{Q/Z} 00 00 00 ?

For Ext\mathrm{Ext}, we have

Ext(,)\mathrm{Ext}(\downarrow,\rightarrow) ZmZ_{m} Z\mathbb{Z} Q\mathbb{Q} Q/Z\mathbb{Q/Z}
ZnZ_n Z(m,n)Z_{(m,n)} ZnZ_n 00 00
Z\mathbb{Z} 00 00 00 00
Q\mathbb{Q} ? ? 00 00
Q/Z\mathbb{Q/Z} ? ? 00 00

For \otimes, we have

Z\downarrow\otimes_{\mathbb{Z}}\rightarrow ZmZ_{m} Z\mathbb{Z} Q\mathbb{Q} Q/Z\mathbb{Q/Z}
ZnZ_n Z(m,n)Z_{(m,n)} ZnZ_n 00 00
Z\mathbb{Z} ZmZ_m Z\mathbb{Z} Q\mathbb{Q} Q/Z\mathbb{Q/Z}
Q\mathbb{Q} 00 Q\mathbb{Q} Q\mathbb{Q} 00
Q/Z\mathbb{Q/Z} 00 Q/Z\mathbb{Q/Z} 00 00

For Tor\mathrm{Tor}, we have

Tor(,)\mathrm{Tor}(\downarrow,\rightarrow) ZmZ_{m} Z\mathbb{Z} Q\mathbb{Q} Q/Z\mathbb{Q/Z}
ZnZ_n Z(m,n)Z_{(m,n)} 00 00 ZnZ_n
Z\mathbb{Z} 00 00 00 00
Q\mathbb{Q} 00 00 00 00
Q/Z\mathbb{Q/Z} ZmZ_m 00 00 Q/Z\mathbb{Q/Z}

And for those arbitrary abelian group, just apply the structure theorem of finite generated abelian group.

评论